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SUMMARY 

Modern lubricants often exhibit shear-thinning due to the presence of high molecular weight polymers as 
additives. Therefore the influence of such non-Newtonian effects on the performances of lubricating systems 
must be predicted. The corresponding fluid film flow is governed by a non-linear partial differential equation, 
which generalizes the classical Reynolds equation. Having prescribed adequate boundary conditions, this 
equation is solved by a finite element method with optimal control. The problem of the square slider bearing 
lubricated by the Rabinowitsch fluid is solved in order to test the accuracy of the numerical scheme. The 
pressure and velocity fields are given and compared with the corresponding ones obtained for the Newtonian 
fluid. 
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INTRODUCTION 

Since for some fluids the viscosity can change by a factor of 10 or 100, owing to the presence 
of macromolecules, it is evident that such an enormous change cannot be ignored in pipe flow 
calculations, lubrication problems, polymer processing operations, etc. In most cases, this effect 
can be considered as preponderant compared with thermal effects. To account for the non- 
Newtonian viscosity, that is the fact that the viscosity of a fluid changes with the shear rate, the 
Reiner ‘generalized Newtonian fluid’ (G.N.F.) has been introduced: 

Tij = - p6ij + 2pDij, (1) 
Where Tij is the stress tensor, p is the pressure, Di j  is the rate of strain tensor and p, which 
represents the non-Newtonian viscosity, can be considered either as a function of D,, (second 
principal invariant of Dij)  or as a function of TI, (second principal invariant of Tij). 

As quoted by Metzner,’ Bird’ or P e a r ~ o n , ~  this model is very useful for applications. The 
literature abounds in theoretical studies dealing with various flow configurations of such a fluid. 
Let us cite for instance the circular tube flow of the Powell-Eyring fluid: of the Sisko fluid’ or 
of the Ellis fluid,6 the Couette flow of the Rabinowitsch fluid7,* or the helical flow of the power-law 
model.’ However, in all these examples, the pressure gradient is known. Studies which consist in 
determining both the pressure and velocity fields are much more recent: hydrodynamic problems 
belong to this category. Numerous approaches have been made to extend the classical lubrication 
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theory, in order to incorporate the main non-Newtonian effects, in various geometrical and 
kinematic  condition^.^^-'^ Carlson and Winer2' proposed a unified treatment of these studies 
in 2D flows. More recently Dien and Elrod,' have considered the 3D case via a linear perturbation 
technique. The present paper is a further generalization, since the 3D case is attacked here keeping 
the same degree of generality as did Carlson and Winer for the 2D case. The governing equations 
have been derived elsewhere22 and solved for a particular rheological model, in a 2D 
conf ig~ra t ion .~~ The pressure is governed by a non-linear partial differential equation, subject to 
two non-linear constraints and associated with adequate boundary conditions. A finite element 
method with optimal control is used. The finite element method is now classical to solve 
Newtonian lubrication p r o b l e r n ~ ~ ~ - ~ ~  or non-Newtonian flows in various  configuration^.^'-^^ 
Nevertheless, this method has seldom been used for non-Newtonian lubrication  problem^.^^^^ 
Besides, in order to take into account very strong non-linearities, optimal control techniques 
coupled to least square methods have proved very The basic concepts of the numerical 
method are first presented for the G.N.F. An example (linear slider bearing) is afterwards 
worked out, in order to test the validity of the proposed method and illustrate the problem. 

PHYSICAL BACKGROUND AND BASIC EQUATIONS 

The flow may be described with reference to a fixed rectangular co-ordinate system (0, xl ,  x2, x3). 
The velocity components at point M(x, t )  will be denoted by U , ,  U,, U,. Let us consider the 
flow bounded between two moving walls, the plane x2 = 0 and the surface x2 = h(x,, x3), separated 
by a small gap: see Figure 1. 

As usual in lubrication theory, the following non-dimensional variables are introduced: 

- U ,  - U 2 L  U u p v '  u,=- V H  ' 0, =$, (3) 

Figure I .  Co-ordinate system and flow configuration 
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- P  p = -  
P O  

(viscosity), (4) 

(5 )  
- H 2  (normal stresses; no 

Tii Ti; =. ______ 
Po V L  summation on index i), 

(pressure), 
- H Z  p = - - - - p  

Po V L  

(7) 
H T j  = __ Tij, i # j (shear stresses), 

where H is a typical film thickness (e.g. the minimum film thickness), L is a typical length along 
the film (e.g. the bearing length or width), V is a typical velocity in the xl- (or x3-) direction 
and po represents a typical viscosity coefficient (e.g. the zero shear rate viscosity). 

Considering the non-Newtonian viscosity as a function ,ii of the second principal invariant 
of the stress tensor, and neglecting the terms of order (H/L)2 (thin film assumptions), the following 
relationships hold between the shear stresses and the shear rates: 

POV 

It has been stated elsewhere" that the pressure in the film and the shear stresses at the lower 
wall, denoted by Tl0 and T30 ,  respectively, are coupled through the following non-linear 
equations: 
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For the sake of simplicity, the non-dimensional variables will now be denoted without bars. 
The function p may be written as follows, without loss of generality: 

where a“ is some function of (TI ,  + Ti,) 
Moreover, if the following change of variables is introduced: 

h a P  t ,  = Tl0 +--, 
2ax, 

equation (10) becomes, after a few elementary manipulations: 

&-div(h3Vp) + div[V(p)] = f(x,, x,), (‘6) 
where div(.) represents the divergence operator, V(.) represents the gradient operator and V(p) is the 
vector of components: 

where 

J ,  = j; ( x, g + T,  .) a”[ ( x, 5 8x1 + Tl o) + ( x, 2 8x3 + T30) ’1 dx, 

and there are analogous expressions for I, and J,, respectively. Lastly f(x,,x,) is a known 
function, defined by 

In the same way, equations (11) and (12) become, respectively 

(22) 
1 

ht, + J, = -(Vh, - V!). 
V 

These are algebraic equations, the form of which depend on the rheological model. 
Thus, the problem consists in solving the generalized Reynolds equation (1 6), associated with 

adequate pressure boundary conditions (homogeneous Dirichlet boundary conditions are chosen 
because they are physically realistic in most cases under consideration), and subject to a non-linear 
constraint (equations (21) and (22)). Having obtained the pressure field, determining the velocity 
field is quite a simple matter, as quoted elsewhere.” 
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NEW FORMULATION O F  THE PROBLEM 

Principle of resolution 

Let us introduce operator A defined by 

A = &div[h3V(.)] + div[V(.)], (23) 

A ( p ) = f ,  in Q, (24) 

Plan = 0 (25) 

so that equation (16) can be written as: 

with 

where JR stands for the boundary of domain Q. 
The non-linear operator A is split up into a linear part, say C ,  and a non-linear part, say B: 

A = C - B ,  (26) 
where 

C = &div[h3V(.)] and B = - div[V(.)]. 

Equation (24) can be written in the form 

C(P) = B(P) +f. (27) 
Following now Cea and G e y m ~ n a t , ~ ~  the problem is considered as an optimal control problem, 
i.e. given a pressure field A(xl, x3), a new pressure field pz(x l ,  x3) can be obtained by solving the 
linear problem: 

C(Pn) = Bob) + f ,  (28) 

Plan = 0. (29) 
One seeks afterwards ;l*(xl, x3) for which the functional J (A)  = $ 1 1  pn - A I /  is minimum; /I * / /  denotes 
an adequate norm in a functional space which will be specified later on. 

Justijication of the new formulation: functional background 

Let V be a Hilbert space with the scalar product ((.;)) and the associated norm / / . / I .  Let V‘ 
be the topological dual of V; the duality between V and V’ is denoted by (.;). Let A be a non-linear, 
continuous operator from “f onto “f‘. Given f belonging to V‘, one seeks the solution of 

A(P) = f 9 

Plan = 0. 
Splitting the operator A into a linear part C and a non-linear part B, so that 

A = C - B ,  (32) 
equation (30) becomes: 

C(P) = B(P) + f .  

C(PA = B ( 4  + $7 

Pnlan = 0, 

The solution of the problem 
(33 )  

(34) 

(35) 
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is unique, for the operator C = (1/6)div[h3V(.)] is linear and coercive. Besides, one assumes that 
the optimum function I* for which J ( I )  = 4 /I A - pn I/ is minimum exists and that operator A 
possesses a Gateaux derivative denoted by A’. 

In the case considered here, the Hilbert space V’ is the Sobolev space HA@) and V‘ is its 
topological dual IT1@). Recall that 

H’(Q = {functions ulu.L2(Q) and VUE(L’(R))~), 

Hi(Q) = (functions uluEH’(R) and uldn = 0). 
(36) 

(37) 
Having stated that the resolution of equations (34) and (35) can be transformed into the seeking 
of a minimum, a gradient technique will be used. For that purpose, an adjoint state is introduced, 
in order to calculate the gradient of J .  

Let 63, be an arbitrary increase of I in V (i.e. in Hh(SZ)). The corresponding increase of J is 
found to be3* 

* J ( A  + 62) - J ( A )  = ((A - pa, 62)) + (E(A)dA, qa), (38) 

(C% 41) = - ((2 -Pa, d), V4=Hi(Q). (39) 

(40) 

((K2.9 cn)) = (B’(I),cP, Pa), V4=H#% (41) 

(42) 

where qn denotes the adjoint state and is defined by 

The gradient G(I) of J is afterwards calculated for I :  

((GV), CP)) = ((1 - Pa, 62)) + (B’(WA qa), V~EHA(Q)- 
Introducing Ka: 

one obtains 

G(A) = I - P A  + K,. 

Knowing G(I)  allows one to reach the minimum I* of J ( I )  by using, for instance, the steepest 
descent method. 

The previous results can be summarized in the following optimality theorem, demonstrated by 
Cea and G e y m ~ n a t : ~ ~  

Theorem. A necessary and suMicient condition for I* to be the solution of the initial problem 
is that the following three conditions be simultaneously satisfied: 

0) C(Pa4 = W*) + f ,  
6) (C% 414 = -((A* -pa*, q)), ‘d4=HA(Qn), 

(iii) ( ( I*  -pi*, q)) + (B’(I*),cp, qn.) = 0, V~,EH;(Q). 

Algorithm of resolution 

(27)-(25) is solved as follows: 
At each step of the iterative procedure mentioned before, the sub-problem defined by equations 

Step 0: initialization. Vector V(p) is initialized with the Newtonian values of p ,  t ,  and t3,  say 
po,  (tl), and (t3),. The pressure field is determined by solving 

C(I,) = f (Reynolds equation), (43) 
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and 
Lo la* = 0 (homogeneous Dirichlet boundary conditions). (44) 

The corresponding values of t ,  and t ,  are easily calculated, since for the Newtonian case 

Step 1. resolution of the state equation, i = 0, I , .  . . 
C(Pai) = W-4) +f 9 

Pailaa = 0. 
Given a pressure distribution l ( x l ,  x,), a viscosity field is associated as follows: 

P(x1 ,x2 ,x3)=P[  ( X 2 E +  7 ; , ) 2 + ( x 2 i i X ) +  a1 ~30)']. 

ax 1 
(49) 

where f i ( )  is a function defined by the non-Newtonian rheological model. Integrals I , ,  J , ,  I, 
and J ,  are then computed numerically (equations (18), (19) and (13)), which allows vector V(1) 
to be determined (equation (17)). Hence, one must solve 

& div(h3Vpa) = - div[V(1)] + f 
Pnlm = 0 

Step 2. resolution of the adjoint state equation. 

(CCP, qni) = - ((4 - Pai,  CP)), V(PEH~(Q)* (52) 

Elementary algebraic manipulations allow one to show that, owing to the divergence form of 
the non-linear operator, the adjoint state vector possesses an explicit form: 

+h3vq, = v(n - pa) ,  (53) 
which avoids solving equation (52). 

where 

so that 
B(1) = - div[V(I)], 

H(l)oq = - div[V'(A),q], V(PEH#~). 
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Equation (58) becomes 

Applying now the divergence theorem and remembering that qa belongs to Ilk@), one obtains 

/Jn VKa.VqdQ = jjn V(&q.Vq,dQ, ~Jv)E~G(Q), (60) 

which is equivalent to, by using equation (53), 

Hence, the gradient G(1) is obviously equal to 

Step 4. descent. The method of steepest descent is used: 

4 + t  = 4 - pG(1i)i 

where p is the descent parameter, computed by means of the ‘cubic spline method’. 

Step 5. convergence test on G(ii) .  

If 11 G(Ai) 11 < E, stop: 1* = Ai. 
If I /  G(Ai) /I > E, set li+ = Ai and return to step 1. 

At this stage, the problem is discretized into elements, which are quadrilateral, isoparametric 
and eight-mode elements. Nothing special is mentioned here, as far as this standard methodology 
is well known. 

ILLUSTRATIVE EXAMPLE 

Introduction 

In the example which is now worked out, the rheological model is described by the following 
equation: 

1 
- = 1 + a(T:, + Ti,), 
P 

where Q is a scalar parameter characteristic of the non-Newtonian fluid. Such a model has been 
chosen for two main reasons: 

( 1 )  The components of vector V ( p )  have an explicit form, which implies that the Gateaux deri- 
vative of V can be expressed in a closed form. 

(2) It is well known that the viscosity of pure mineral oils decreases as their temperature 
increases. To reduce this detrimental effect, lubricating oils are added with ‘viscosity index 
improvers’, which are high molecular weight polymers. Correlatively, these lubricants exhibit a 
non-linear relationship between the shear stress and the rate of shear, as usual for solutions of 
polymers. Wada and H a y a ~ h i ~ ~ - ~ ’  have shown that the so-called Rabinowitsch empirical 

could fit reasonably well the behaviour of mineral oils added with polyisobutylene, for 
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shear rates ranging from 0 to lo5 s-’. In 1D flows, the non-Newtonian viscosity is expressed as 
follows: 

(64) 
1 

P 
- = 1 + aT:,, 

where the typical values of a range between 0 and 1.13 in their experiments. 
The fluid being isotropic, equation (63) is obviously the 3-D generalization of equation (64). 
The lubricating system considered here is a linear slider bearing: see Figure 2. Having chosen 

as a typical film thickness the minimum film thickness (h,) and as a typical value of L the bearing 
length, one gets the following expression for h(x,, x3):  

h = u + (1 - (65) 
where a = h,/h,. 

The upper surface is fixed, whereas the lower plate translates in a direction parallel to the 
xl-axis, at a velocity denoted by V(: which is chosen as a typical value for V .  Hence, f ( x l ,  x3) 
merely reduces to dhldx,, i.e. f(x,, x 3 )  = 1 - a. 

Modij?ed equations 

The generalized Reynolds equation now reads 

&div(h3Vp) + div[V(p)] = 1 - a. 

After lengthy but straightforward calculations, the following expressions are obtained for the 
components of the vector V(p), denoted by &J) and &): 

Figure 2. Finite slider bearing configuration 
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The coefficients &'p) (i  = 1 , .  . . ,4) are obtained by interchanging indices 1 and 3 in the expressions 
(69) to (72), respectively. 

As for the constraint equations (21) and (22), they can be written as 

Lit, + 5t3 + Mht,(t: + t z )  = - 1, 

6ts + c"t3 + aht3(t: + t i )  = 0, 
where 

a" = h + ah" [ (g)' + -( 1 --)2], a P  

c" = h + a h" [ ( g)2 + - 1 (-) aP '1. 
4 3 ax, 

h3 ap b = a -  - 
6 ( ~ ~ ~ ) ( ~ ) 7  

4 3 ax, 

(73) 

(74) 

(75) 

(77) 

The domain of integration is the unit square in the plane (Ox,, Ox,), (0 < x, < 1; - 4 d x, d )). 
The homogeneous Dirichlet boundary conditions correspond to setting the pressure equal to zero 
at the edge of the bearing. 

Results 

Two types of results are now presented (1) results showing the convergence of the numerical 
scheme and (2) results dealing with the flow characteristics (pressure and velocity). 

Convergence and accuracy. As noted before, the convergence of the iterative algorithm is 
ensured.37 However, the rate of convergence depends on both parameters a (geometry) and a 
(fluid). In Figure 3 the number of iterations N is plotted against the parameter a, for a prescribed 
value of parameter a. Figure 4 show how the solution is attained after a few iterations, starting from 
the Newtonian pressure field. It is seen in Figure 5 that the deviation between A and pn quickly 
decreases after 2 or 3 iterations. 

Concerning the accuracy of the scheme, no direct comparison was made possible because of 
a lack of existing data in the literature. However, for a sufficiently high width-length ratio 1/L, 
the flow can be considered as 'infinitely wide'. The problem is thus governed by an ordinary 
differential equation, which can be solved by using a method completely different from the present 
one.23 Havingprescribedawidth-lengthratio l/Lequal to 8, thepressurefieldcomputedbymeansof 
the present scheme is compared with this asymptotic solution. Excellent agreement is found, for any 
values of the parameters M (ranging from 0 to 1) and a (ranging from f to 4). 
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Figure 3. Number of iterations versus non-Newtonian coefficient, for a = 2 

Figure 4. 2.-field at each iteration 

Figure 5. (d,p,) pairs at each iteration: p ,  results from the state equation (50) and (51); d minimizes the functional 
J = f l l  P I  - 1 I/ 
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. 

r x, 
0 02 OL 06 08 10 

Figure 6. Isopressure curves (a = 2; Newtonian case); pressure increment: Ap = 0.1048 x lo-' 

0 02 OL 06 08 10 
Figure 7. Isopressure curves (a = 2; non-Newtonian case: E = I); pressure increment Ap = 06243 x 

Figure 8. Linear bearing pressure distribution in plane x3 = 0, for E = 0, 01. 04, 0.7 
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-0.5 -03 - 0.1 0. 0.I 0.3 0.5 
Figure 9. Linear bearing pressure distribution in plane x, = 4, for a = 0, 0.1, 0.4,0.7 

SLALE : 0.7 
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02 
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.XI 
0. 0.L 0.8 

Figure 10. Linear bearing velocity in plane x2 = 0.75, (Newtonian case) 

SCALE : 0.7 
_. 

, x, 
0. 0.4 0.8 

Figure 11. Linear bearing velocity field in plane xz = 0.75, (non-Newtonian case: a = 1.) 
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Flow characteristics. 

Pressure field 

The general shape of the pressure field is not affected by the non-Newtonian character of the 
lubricant, as seen in Figures 6 and 7 (isopressure curves). However, the magnitude of the pressure 
generated in the system is less important for the non-Newtonian fluid, owing to shear-thinning: 
see Figures 8 and 9. 

Velocity field 

The velocity field determined for the non-Newtonian fluid is only slightly different from the 
corresponding one obtained in the Newtonian case. 

It should be noted that velocity fields have been compared for the parameter a = 2. This value 
has been chosen because it is well known that, in the Newtonian case, the pressure generation 
effects reach their maximum for a 2: 2.2. It involves that the pressure will deeply affect the velocity 
field, which is not the case for a = 1 or a = 4 (say). In conclusion, although each velocity field 
(Newtonian and non-Newtonian) is expected to depart significantly from a Couette nature, no 
marked difference between the velocity fields of Figures 10 and 1 1  may be perceived. 

CONCLUSION 

The pressure and velocity fields developed in a generalized Newtonian fluid flowing between 
two moving surfaces separated by a small gap, are calculated. The basic equation of the problem 
is a non-linear partial differential equation subject to two non-linear algebraic constraints. The 
numerical method is a finite element method with optimal control. An illustrative example (finite 
width plane slider bearing) is presented in order to confirm the efficiency of the method to 
account for marked non-linearities. 

Compared with a more classical scheme (fixed-point iterative method for instance), the 
scheme proposed in this paper offers two main advantages: (1) convergence is assured a priori 
and (2) convergence is much faster: as shown in a simple illustrative example (linear slider 
bearing), the procedure converges after about ten iterations, even for the most non-Newtonian 
case (a = 1). However, the method of steepest descent could well be replaced by methods of the 
conjugate gradient type: the number of iterations would probably still be reduced. As far as the 
accuracy of the scheme is now concerned, no published data were available in the literature, to 
our best knowledge. It was therefore impossible to proceed to a direct comparison with a more 
classical method. However, for a width-length radio of 8, excellent agreement has been found 
with the asymptotic solution corresponding to the so-called infinitely wide configuration. 

Further developments would now consist in 
1. Adaptating the program to more complex configurations and boundary conditions: this 

would not present too many difficulties, owing to the high flexibility of the finite element method 
in general. 

2. Coupling the shear-thinning effects taken into account here with possible viscoelastic effects. 
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